ОГЛАВЛЕНИЕ

Предисловие	12
Введение. Нелинейность как синоним взаимодействия	16
Глава 1. Основы математического описания	
1.1. Точное решение базового уравнения для бегущих волн	
1.2. Линеаризация для произвольного одномерного движения среды	
1.3. Гармонический исходный сигнал	
1.4. Спектры римановых волн	
1.5. Метод медленно изменяющегося профиля	
1.6. Общее эволюционное уравнение для одномерных волн	
1.7. Метод последовательных приближений	30
1.8. Взаимодействие плоских волн, пересекающихся под углом	
Приложение 1. Вывод «базового» уравнения	34
Приложение 2. Почему акустическое давление мало	35
Приложение 3. Риманово решение уравнений гидродинамики (простая	
волна)	36
Приложение 4. Уравнение Хохлова—Заболотской и его история	37
Приложение 5. Нелинейное уравнение Вебстера для волн в трубках	38
Литература к главе 1	39
Глава 2. Об акустической нелинейности	
2.1. Граничная нелинейность	40
2.1.1. Граничная геометрическая нелинейность	40
2.1.2. Граничная физическая нелинейность	43
2.1.3. Граничная структурная нелинейность	44
2.2. Объемная нелинейность	46
2.2.1. Объемная физическая и геометрическая нелинейности жидкостей	
и газов	47
2.2.2. Объемная физическая и геометрическая нелинейности твердых тел	49
2.2.3. Объемная структурная нелинейность	50
Литература к главе 2	
Глава 3. Волны с разрывами	
3.1. Разрывы в простых волнах	54
3.1.1. Сохранение количества движения и правило равенства площадей	54
3.1.2. Эволюция профиля простой волны, содержащей разрывы	
3.1.3. Потери энергии пилообразной волны, N- и S-волн	
3.1.4. Разрывы в простых волнах в кубично-нелинейной среде	
Приложение 1. Примеры расчета сложных профилей	
Приложение 2. Длина образования разрыва и насыщение: оценки	
Литература к главе 3	

Глава 4. Диссипативная среда. Уравнение Бюргерса	
4.1. Линейные волны в диссипативной среде	68
4.2. Нормировка. Число Рейнольдса – Гольдберга	69
4.3. Базовые точные решения	69
4.4. Метод группового анализа и симметрии уравнения Бюргерса	71
4.5. Линеаризующая подстановка и точное общее решение	73
4.5.1. Гармонический сигнал	
4.5.2. Импульсный сигнал	76
4.5.3. Асимптотическое решение	
Приложение 1. Об исторических фактах, связанных с уравнением	
Бюргерса	80
Приложение 2. Энергия и количество движения	
Литература к главе 4	
Глава 5. Одномерные волны: сферические, цилиндрические, волн	LI
в рупорах и концентраторах, лучевых трубках	
5.1. Разрывы в сферических и цилиндрических волнах	84
5.2. Сферические и цилиндрические волны в диссипативной среде	
5.3. Волны в узких трубках	
5.4. Волны в лучевых трубках	
Литература к главе 5	
Глава 6. Акустические пучки в линейном приближении	
6.1. Гауссов пучок с плоским исходным фронтом	94
6.2. Фокусировка гауссова пучка	
Приложение 1. Решение линеаризованного уравнения X3	
Приложение 2. Характеристика направленности	
Литература к главе 6	
1 31	
Глава 7. Нелинейные акустические пучки	
7.1. Параксиальное приближение – профиль вблизи оси пучка	104
7.2. Модифицированное параксиальное приближение для сфокусированного пучка	107
7.3. Одномерная модель уравнения ХЗ	
7.4. Геометрическая акустика сфокусированных пилообразных волн	
Приложение 1. Решение, описывающее профиль сфокусированной	11
нелинейной волны в пучке	116
Приложение 2. Профиль стационарной волны в фокальной области	
Приложение 3. Прохождение волны через фокальную область	
Литература к главе 7	
1 /1	

Глава 8. Релаксирующая среда. Дисперсия в акустике	
8.1. Кинетика внутренних параметров	123
8.2. О решении нелинейных уравнений для волн с релаксацией	125
8.3. Некоторые конкретные формы ядер в акустических задачах	
8.4. Осциллирующие ядра в акустике	128
8.5. Геометрическая дисперсия в нелинейной акустике	
8.6. Нелинейные волны в средах с поглощением, зависящим от частоты	
8.7. Потери энергии, запаздывание, гистерезис	
8.8. Потери в средах с гистерезисом	
Литература к главе 8	
Глава 9. Возбуждение нелинейных волн. Неоднородные уравнения	
9.1. О явлении волнового резонанса	
9.2. Стационарные простые волны в модели неоднородного уравнения	
9.3. Возбуждение волн в модели неоднородного уравнения	
9.4. Возбуждение волн в диссипативной среде	
Приложение 1. Вывод неоднородного уравнения	
Литература к главе 9	164
Глава 10. Возбуждение волн тепловыми источниками	
10.1. Возбуждение волн неподвижными тепловыми источниками	165
10.2. Передаточные функции и формы бегущих волн	
10.3. Нелинейная и дифракционная эволюция термооптических	109
сигналов	174
Приложение 1. Лазерное возбуждение сигналов сложной формы	
Приложение 1. лазерное возоуждение сигналов сложной формы Приложение 2. Тепловая нелинейность при лазерном возбуждении	1/0
	170
звука	
литература к главе 10	101
Глава 11. Возбуждение нелинейных волн и течений	
11.1. Генерация гиперзвука встречными лазерными пучками	182
11.2. Акустическая нелинейность при ВРМБ	
11.3. Установление нелинейного акустического течения	
11.4. Обтекание тел трансзвуковым потоком сжимаемого газа	
11.5. Возбуждение сдвиговых колебаний радиационным давлением	
модулированного ультразвука. Эластография	194
Литература к главе 11	

Глава 12. Стоячие волны, резонаторы	
12.1. Метод расчета характеристик нелинейных резонаторов	201
12.2. Стоячие волны и добротность резонатора с диссипативной средой .	
12.3. Частотные отклики квадратично-нелинейного резонатора	
12.4. Увеличение добротности при внесении в резонатор потерь	
12.5. Геометрическая нелинейность резонатора, обусловленная	
конечностью смещения границы	219
12.6. Резонатор, заполненный кубично-нелинейной средой	
<i>Приложение</i> \hat{l} . Резонансная кривая для разрывных колебаний	242
Литература к главе 12	
Глава 13. Нелинейности с особенностями	
13.1. Квадратично-кубичная нелинейность	248
13.2. Квадратично-кубичные простые волны	
13.3. Квадратично-кубичное уравнение Бюргерса	257
13.4. Релаксационное и ХЗ уравнения с QС-нелинейностью	
13.5. Системы с модульной нелинейностью	
Литература к главе 13	278
Глава 14. Самовоздействия волновых пучков	
14.1. Пример теплового самовоздействия	281
14.2. Самовоздействие пучков квазигармонических волн за счет	
нагревания среды и формирования акустического ветра	
14.3. Тепловое самовоздействие пилообразных волн	
14.4. Безынерционные самовоздействия	
14.5. Саморефракция импульсов	
Литература к главе 14	299
Глава 15. Генерация гармоник в одномерных волнах. Селективно-	
поглощающая среда	
15.1. Гармоники монохроматического сигнала в диссипативной среде	302
15.2. Спектр бигармонического сигнала в диссипативной среде.	
Вырожденное параметрическое взаимодействие	306
15.3. Гармоники сферических и цилиндрических волн, а также	
плоских волн в средах с релаксацией	
15.4. Взаимодействия гармоник в системах с селективным поглощением	
Литература к главе 15	320